A Review on Cartilaginous Endplates and The Degeneration of Intervertebral Disc
DOI:
https://doi.org/10.56981/Keywords:
Cartilaginous Endplates, Intervertebral Disc Degeneration, Low back pain, proteoglycans, Magnetic Resonance Imaging, Artificial Intelligence.Abstract
Cartilaginous Endplates (CEP) acts as a mechanical barrier and forms the anatomical structure of intervertebral disc. It allows the nutrients to get transported into the disc from the nearby blood vessels. Low back pain is a primary complication raised by Intervertebral Disc Degeneration (IVDD). The objective of the current review article is to provide an overview about the composition and the functions of Cartilaginous Endplates, development and the progression of the IVDD, application of modern techniques for its treatment. CEP primarily contains water, type II collagen, glycosaminoglycans (GAGs) while it also has type X collagen. The study provided an overview about the IVDD, causal factors, diagnostic methods, and the application of different types of treatment methods. The authors recommend validating the stem cell-based therapies at clinical levels since such therapies have been proposed and validated so far, only in in vitro and animal models. Further, the study recommends to develop novel diagnostic tools that are not only cost-effective, but also non-invasive by leveraging the Artificial Intelligence and Machine Learning techniques in the diagnostics methods.
References
1. Moon SM, Yoder JH, Wright AC, Smith LJ, Vresilovic EJ, Elliott DM. Evaluation of intervertebral disc cartilaginous endplate structure using magnetic resonance imaging. Eur spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2013 Aug;22(8):1820–8.
2. Peng B, Li Y. Concerns about cell therapy for intervertebral disc degeneration. npj Regen Med [Internet]. 2022;7(1):46. Available from: https://doi.org/10.1038/s41536-022-00245-4
3. Gradišnik L, Maver U, Gole B, Bunc G, Voršič M, Ravnik J, et al. The Endplate Role in Degenerative Disc Disease Research: The Isolation of Human Chondrocytes from Vertebral Endplate-An Optimised Protocol. Bioeng (Basel, Switzerland). 2022 Mar;9(4).
4. Crock H V, Goldwasser M. Anatomic studies of the circulation in the region of the vertebral end-plate in adult Greyhound dogs. Spine (Phila Pa 1976). 1984 Oct;9(7):702–6.
5. Roberts S, Menage J, Eisenstein SM. The cartilage end-plate and intervertebral disc in scoliosis: calcification and other sequelae. J Orthop Res Off Publ Orthop Res Soc. 1993 Sep;11(5):747–57.
6. Moore RJ. The vertebral end-plate: what do we know? Eur spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2000 Apr;9(2):92–6.
7. Urban JPG, Roberts S. Degeneration of the intervertebral disc. Arthritis Res Ther. 2003;5(3):120–30.
8. 8. Feng X, Li Y, Su Q, Tan J. Degenerative Nucleus Pulposus Cells Derived Exosomes Promoted Cartilage Endplate Cells Apoptosis and Aggravated Intervertebral Disc Degeneration [Internet]. Vol. 9, Frontiers in Molecular Biosciences . 2022. Available from: https://www.frontiersin.org/articles/10.3389/fmolb.2022.835976
9. Lemeunier N, Leboeuf-Yde C, Gagey O. The natural course of low back pain: a systematic critical literature review. Chiropr Man Therap. 2012 Oct;20(1):33.
10. World Health Organization W. Musculoskeletal health [Internet]. 2022 [cited 2022 Nov 25]. Available from: https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions
11. Shetty GM, Jain S, Thakur H, Khanna K. Prevalence of low back pain in India: A systematic review and meta-analysis. Work. 2022;73(2):429–52.
12. Vlaeyen JWS, Maher CG, Wiech K, Van Zundert J, Meloto CB, Diatchenko L, et al. Low back pain. Nat Rev Dis Prim [Internet]. 2018;4(1):52. Available from: https://doi.org/10.1038/s41572-018-0052-1
13. Smith LJ, Silverman L, Sakai D, Le Maitre CL, Mauck RL, Malhotra NR, et al. Advancing cell therapies for intervertebral disc regeneration from the lab to the clinic: Recommendations of the ORS spine section. JOR SPINE [Internet]. 2018 Dec 1;1(4):e1036. Available from: https://doi.org/10.1002/jsp2.1036
14. Loibl M, Wuertz-Kozak K, Vadala G, Lang S, Fairbank J, Urban JP. Controversies in regenerative medicine: Should intervertebral disc degeneration be treated with mesenchymal stem cells? JOR SPINE [Internet]. 2019 Mar 1;2(1):e1043. Available from: https://doi.org/10.1002/jsp2.1043
15. Fournier DE, Kiser PK, Shoemaker JK, Battié MC, Séguin CA. Vascularization of the human intervertebral disc: A scoping review. JOR SPINE [Internet]. 2020 Dec 1;3(4):e1123. Available from: https://doi.org/10.1002/jsp2.1123
16. Risbud M V, Shapiro IM. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol [Internet]. 2014;10(1):44–56. Available from: https://doi.org/10.1038/nrrheum.2013.160
17. Luo L, Gong J, Wang Z, Liu Y, Cao J, Qin J, et al. Injectable cartilage matrix hydrogel loaded with cartilage endplate stem cells engineered to release exosomes for non-invasive treatment of intervertebral disc degeneration. Bioact Mater [Internet]. 2022;15:29–43. Available from: https://www.sciencedirect.com/science/article/pii/S2452199X21005715
18. Luo L, Jian X, Sun H, Qin J, Wang Y, Zhang J, et al. Cartilage endplate stem cells inhibit intervertebral disc degeneration by releasing exosomes to nucleus pulposus cells to activate Akt/autophagy. Stem Cells [Internet]. 2021 Apr 1;39(4):467–81. Available from: https://doi.org/10.1002/stem.3322
19. Wang L, Han M, Wong J, Zheng P, Lazar AA, Krug R, et al. Evaluation of human cartilage endplate composition using MRI: Spatial variation, association with adjacent disc degeneration, and in vivo repeatability. J Orthop Res [Internet]. 2021 Jul 1;39(7):1470–8. Available from: https://doi.org/10.1002/jor.24787
20. Fields AJ, Han M, Krug R, Lotz JC. Cartilaginous End Plates: Quantitative MR Imaging with Very Short Echo Times—Orientation Dependence and Correlation with Biochemical Composition. Radiology [Internet]. 2014 Oct 10;274(2):482–9. Available from: https://doi.org/10.1148/radiol.14141082
21. Chen X, Guo W, Li H, Li X, Han Z, Chu X, et al. Evaluation of Cartilaginous Endplate Degeneration Based on Magnetic Resonance Imaging. Lv Z, editor. J Healthc Eng [Internet]. 2021;2021:5534227. Available from: https://doi.org/10.1155/2021/5534227
22. Tomaszewski K, Saganiak K, Gładysz T, Walocha J. The biology behind the human intervertebral disc and its endplates. Folia Morphol (Warsz) [Internet]. 2015;74(2):157–68. Available from: https://doi.org/10.5603/FM.2015.0026
23. ROBERTS S, MENAGE J, DUANCE V, WOTTON S, AYAD S. 1991 Volvo Award in Basic Sciences: Collagen Types Around the Cells of the Intervertebral Disc and Cartilage End Plate: An Immunolocalization Study. Spine (Phila Pa 1976) [Internet]. 1991;16(9). Available from: https://journals.lww.com/spinejournal/Fulltext/1991/09000/1991_Volvo_Award_in_Basic_Sciences__Collagen_Types.3.aspx
24. Roberts S, Menage J, Urban JP. Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine (Phila Pa 1976). 1989 Feb;14(2):166–74.
25. Aigner T, Gresk-otter KR, Fairbank JC, von der Mark K, Urban JP. Variation with age in the pattern of type X collagen expression in normal and scoliotic human intervertebral discs. Calcif Tissue Int. 1998 Sep;63(3):263–8.
26. Fields AJ, Ballatori A, Liebenberg EC, Lotz JC. Contribution of the endplates to disc degeneration. Curr Mol Biol reports. 2018 Dec;4(4):151–60.
27. Bonnheim NB, Wang L, Lazar AA, Zhou J, Chachad R, Sollmann N, et al. The contributions of cartilage endplate composition and vertebral bone marrow fat to intervertebral disc degeneration in patients with chronic low back pain. Eur Spine J [Internet]. 2022;31(7):1866–72. Available from: https://doi.org/10.1007/s00586-022-07206-x
28. Martins DE, Medeiros VP de, Wajchenberg M, Paredes-Gamero EJ, Lima M, Reginato RD, et al. Changes in human intervertebral disc biochemical composition and bony end plates between middle and old age. PLoS One [Internet]. 2018 Sep 18;13(9):e0203932. Available from: https://doi.org/10.1371/journal.pone.0203932
29. Fields AJ, Rodriguez D, Gary KN, Liebenberg EC, Lotz JC. Influence of biochemical composition on endplate cartilage tensile properties in the human lumbar spine. J Orthop Res [Internet]. 2014 Feb 1;32(2):245–52. Available from: https://doi.org/10.1002/jor.22516
30. Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine (Phila Pa 1976). 2002 Dec;27(23):2631–44.
31. Singh S, Patel AA, Singh JR. Intervertebral Disc Degeneration: The Role and Evidence for Non-Stem-Cell-Based Regenerative Therapies. Int J spine Surg. 2021 Apr;15(s1):54–67.
32. Vasiliadis ES, Pneumaticos SG, Evangelopoulos DS, Papavassiliou AG. Biologic treatment of mild and moderate intervertebral disc degeneration. Mol Med. 2014 Sep;20(1):400–9.
33. Mattei TA, Rehman AA. Schmorl’s nodes: current pathophysiological, diagnostic, and therapeutic paradigms. Neurosurg Rev [Internet]. 2014;37(1):39–46. Available from: https://doi.org/10.1007/s10143-013-0488-4
34. Grant MP, Epure LM, Bokhari R, Roughley P, Antoniou J, Mwale F. Human cartilaginous endplate degeneration is induced by calcium and the extracellular calcium-sensing receptor in the intervertebral disc. Eur Cell Mater. 2016 Jul;32:137–51.
35. Wu PH, Kim HS, Jang I-T. Intervertebral Disc Diseases PART 2: A Review of the Current Diagnostic and Treatment Strategies for Intervertebral Disc Disease. Int J Mol Sci [Internet]. 2020 Mar 20 [cited 2022 Nov 26];21(6):2135. Available from: https://www.mdpi.com/1422-0067/21/6/2135
36. Rasouli JJ, Shao J, Neifert S, Gibbs WN, Habboub G, Steinmetz MP, et al. Artificial Intelligence and Robotics in Spine Surgery. Glob spine J. 2021 May;11(4):556–64.
37. Jiang S, Song X, Jiang C. Deep Learning-Based Magnetic Resonance-Ultrashort Time of Echo Imaging for Analyzing Degeneration of Intervertebral Disc Cartilage Endplate and Rehabilitation Nursing. Abdulhay E, editor. Concepts Magn Reson Part A, Bridg Educ Res [Internet]. 2022;2022:8709075. Available from: https://doi.org/10.1155/2022/8709075
38. Eisenstein SM, Balain B, Roberts S. Current Treatment Options for Intervertebral Disc Pathologies. Cartilage. 2020 Apr;11(2):143–51.
39. Romaniyanto, Mahyudin F, Sigit Prakoeswa CR, Notobroto HB, Tinduh D, Ausrin R, et al. An update of current therapeutic approach for Intervertebral Disc Degeneration: A review article. Ann Med Surg. 2022 May;77:103619.
40. Dowdell J, Erwin M, Choma T, Vaccaro A, Iatridis J, Cho SK. Intervertebral Disk Degeneration and Repair. Neurosurgery. 2017 Mar;80(3S):S46–54.
41. Tamama K, Kawasaki H, Wells A. Epidermal growth factor (EGF) treatment on multipotential stromal cells (MSCs). Possible enhancement of therapeutic potential of MSC. J Biomed Biotechnol. 2010;2010:795385.
42. Boyd LM, Carter AJ. Injectable biomaterials and vertebral endplate treatment for repair and regeneration of the intervertebral disc. Eur spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2006 Aug;15 Suppl 3(Suppl 3):S414-21.
43. Fernandez-Moure J, Moore CA, Kim K, Karim A, Smith K, Barbosa Z, et al. Novel therapeutic strategies for degenerative disc disease: Review of cell biology and intervertebral disc cell therapy. SAGE open Med. 2018;6:2050312118761674.
44. Chen J, Lin Z, Deng K, Shao B, Yang D. Tension induces intervertebral disc degeneration via endoplasmic reticulum stress-mediated autophagy. Biosci Rep. 2019 Aug;39(8).
45. Xiang Q, Kang L, Wang J, Liao Z, Song Y, Zhao K, et al. CircRNA-CIDN mitigated compression loading-induced damage in human nucleus pulposus cells via miR-34a-5p/SIRT1 axis. eBioMedicine [Internet]. 2020 Mar 1;53. Available from: https://doi.org/10.1016/j.ebiom.2020.102679
46. Chen Y, Wu Y, Shi H, Wang J, Zheng Z, Chen J, et al. Melatonin ameliorates intervertebral disc degeneration via the potential mechanisms of mitophagy induction and apoptosis inhibition. J Cell Mol Med [Internet]. 2019 Mar 1;23(3):2136–48. Available from: https://doi.org/10.1111/jcmm.14125
47. Zhang Q, Li J, Li Y, Che H, Chen Y, Dong J, et al. Bmi deficiency causes oxidative stress and intervertebral disc degeneration which can be alleviated by antioxidant treatment. J Cell Mol Med [Internet]. 2020 Aug 1;24(16):8950–61. Available from: https://doi.org/10.1111/jcmm.15528
48. Kakiuchi Y, Yurube T, Kakutani K, Takada T, Ito M, Takeoka Y, et al. Pharmacological inhibition of mTORC1 but not mTORC2 protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism through Akt and autophagy induction. Osteoarthr Cartil [Internet]. 2019 Jun 1;27(6):965–76. Available from: https://doi.org/10.1016/j.joca.2019.01.009
49. Kang L, Liu S, Li J, Tian Y, Xue Y, Liu X. The mitochondria-targeted anti-oxidant MitoQ protects against intervertebral disc degeneration by ameliorating mitochondrial dysfunction and redox imbalance. Cell Prolif [Internet]. 2020 Mar 1;53(3):e12779. Available from: https://doi.org/10.1111/cpr.12779
50. Huang H, Cheng S, Zheng T, Ye Y, Ye A, Zhu S, et al. Vitamin D retards intervertebral disc degeneration through inactivation of the NF-κB pathway in mice. Am J Transl Res. 2019;11(4):2496–506.
51. Lin J, Zhuge J, Zheng X, Wu Y, Zhang Z, Xu T, et al. Urolithin A-induced mitophagy suppresses apoptosis and attenuates intervertebral disc degeneration via the AMPK signaling pathway. Free Radic Biol Med [Internet]. 2020;150:109–19. Available from: https://www.sciencedirect.com/science/article/pii/S0891584919325444
52. Liu W, Jin S, Huang M, Li Y, Wang Z, Wang P, et al. Duhuo jisheng decoction suppresses matrix degradation and apoptosis in human nucleus pulposus cells and ameliorates disc degeneration in a rat model. J Ethnopharmacol [Internet]. 2020;250:112494. Available from: https://www.sciencedirect.com/science/article/pii/S0378874119341935
53. Wang H, Zhou Y, Huang B, Liu L-T, Liu M-H, Wang J, et al. Utilization of stem cells in alginate for nucleus pulposus tissue engineering. Tissue Eng Part A. 2014 Mar;20(5–6):908–20.
54. Chen S, Zhao L, Deng X, Shi D, Wu F, Liang H, et al. Mesenchymal Stem Cells Protect Nucleus Pulposus Cells from Compression-Induced Apoptosis by Inhibiting the Mitochondrial Pathway. Stem Cells Int. 2017;2017:9843120.
55. Wang W, Wang Y, Deng G, Ma J, Huang X, Yu J, et al. Transplantation of Hypoxic-Preconditioned Bone Mesenchymal Stem Cells Retards Intervertebral Disc Degeneration via Enhancing Implanted Cell Survival and Migration in Rats. Stem Cells Int. 2018;2018:7564159.
56. Huang Y-C, Urban JPG, Luk KDK. Intervertebral disc regeneration: do nutrients lead the way? Nat Rev Rheumatol. 2014 Sep;10(9):561–6.
57. Ashinsky B, Smith H, Mauck R, Gullbrand S. Intervertebral disc degeneration and regeneration: a motion segment perspective. Eur Cell Mater. 2021;41:370–80.
58. Zhang X, Hu Y, Cheng P, Zhou H, Chen X, Wu D, et al. Targeted therapy for intervertebral disc degeneration: inhibiting apoptosis is a promising treatment strategy. Int J Med Sci [Internet]. 2021;18(13):2799–813. Available from: https://www.medsci.org/v18p2799.htm
59. Anatomy of nucleus pulposus. Raed h. Ogail, Lames Husam AlmanseeKanaa. Int J Med Sci, 2022;2(1):60-64
Downloads
Published
Issue
Section
License
Copyright (c) 2023 https://creativecommons.org/licenses/by/4.0/

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.